目的 满足深潜装备用高强钢材料阴极保护需求,探明活化元素对锌合金牺牲阳极电化学性能的影响规律。方法 采用合金化设计方法,控制活化元素,制备新型锌合金牺牲阳极。通过常规电化学性能试验、电化学测试、扫描开尔文探针测试数据及微观形貌表征结果,综合分析活化元素对锌合金牺牲阳极组织和综合性能的影响,探明低驱动电位锌合金牺牲阳极性能的变化规律。结果 添加Ga、Mn、Sn和Cd活化元素的牺牲阳极,表面溶解形貌相对均匀,阳极电位发生不同程度的正移,用于阴极保护时,驱动电位得到降低,其工作电位基本处于-1.02~-0.8 V(vs. Ag/AgCl),牺牲试样呈现表面溶解活性降低、溶解速率变慢的趋势。结论 通过添加各类活化元素,均使锌合金牺牲阳极性能得到不同程度的优化改善。Cd元素可增大阳极试样表面的杂乱度,随Sn、Mn含量的增加,牺牲阳极试样的晶粒尺寸得到一定细化。其中,Zn-0.5Mn系列牺牲阳极较满足高强钢阴极保护的需求,工作电位为-0.95~-0.84 V(vs. Ag/AgCl),表面活性位点分布均匀,可进一步开发适用于高强钢结构材料阴极保护的新型牺牲阳极。
Abstract
The work aims to explore the influence of activating elements on the electrochemical performance of zinc alloy sacrificial anodes to meet the cathodic protection requirements of high-strength steel materials for deep diving equipment. A new type of zinc alloy sacrificial anode was prepared according to the alloying design method to control the activation elements. Through conventional electrochemical performance tests, electrochemical tests, scanning Kelvin probe test data, and microstructure characterization results, the influence of activation elements on the microstructure and comprehensive properties of zinc alloy sacrificial anodes was comprehensively analyzed, and the changes in the performance of low driving potential zinc alloy sacrificial anodes were explored. The surface dissolution morphology of the sacrificial anode added with Ga, Mn, Sn, and Cd activation elements was relatively uniform, and the anode potential underwent different degrees of positive shift. When used for cathodic protection, the driving potential was reduced, and its working potential was basically within the range of -1.02~-0.8 V (vs. Ag/AgCl). The sacrificial sample showed a trend of decreased surface dissolution activity and slower dissolution rate. By adding various activating elements, the sacrificial anode performance of zinc alloy is optimized and improved to varying degrees. Cd element can increase the surface disorder of the anode sample, and the grain size of the sacrificial anode sample is refined to a certain extent with the increase of Sn and Mn content. Among them, the Zn-0.5Mn series sacrificial anode better meets the cathodic protection requirements of high-strength steel, with a working potential of -0.95~-0.84 V (vs. Ag/AgCl) and a uniform distribution of surface active sites. Further development of new sacrificial anodes suitable for cathodic protection of high-strength steel structural materials is possible.
关键词
活化元素 /
深潜装备 /
牺牲阳极 /
阴极保护 /
低驱动电位 /
电化学
Key words
active elements /
deep diving equipment /
sacrificial anode /
cathodic protection /
low driving voltage /
electrochemistry
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡波. 中国的深海战略与海洋强国建设[J]. 人民论坛·学术前沿, 2017(18): 12-21.
HU B.Chinaʹs Deep-Sea Strategy and Marine Power Road[J]. Frontiers, 2017(18): 12-21.
[2] 何筱姗, 吕平, 何鑫, 等. 关于深海环境下金属结构腐蚀的研究新进展[J]. 环境工程, 2014, 32(S1): 1020-1023.
HE X S, LYU P, HE X, et al.Research Progress on Corrosion of Metal Structures in Deep-Sea Environment[J]. Environmental Engineering, 2014, 32(S1): 1020-1023.
[3] 侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82-84.
HOU J, GUO W M, DENG C L.Influences of Deep Sea Environmental Factors on Corrosion Behavior of Carbon Steel[J]. Equipment Environmental Engineering, 2008, 5(6): 82-84.
[4] HU Q F, LIU Y C, ZHANG T, et al.Modeling the Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel in the Simulated Deep Sea Environments Using Design of Experiment and Artificial Neural Network[J]. Journal of Materials Science & Technology, 2019, 35(1): 168-175.
[5] HAN W, TONG H, WEI S, et al. Corrosion Behaviors of 10CrNiCu High Strength Steel in Simulated Deep Sea Environment of High Hydrostatic Pressure and Low Dissolved Oxygen[J]. Materials Performance and Characterization, 2017, 6(1): MPC20160122.
[6] 曹攀, 周婷婷, 白秀琴, 等. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.
CAO P, ZHOU T T, BAI X Q, et al.Research Progress on Corrosion and Protection in Deep-Sea Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(1): 12-20.
[7] MILES S.Corrosion and Cathodic Protection in Deep Water[J]. Materials Performance, 2022, 61(5): 32-33.
[8] 孙明先, 马力, 张海兵, 等. 铝合金牺牲阳极材料的研究进展[J]. 装备环境工程, 2018, 15(3): 9-13.
SUN M X, MA L, ZHANG H B, et al.Research Progress in Aluminum Alloy Sacrificial Anode Materials[J]. Equipment Environmental Engineering, 2018, 15(3): 9-13.
[9] 邢少华, 李焰, 马力, 等. 深海工程装备阴极保护技术进展[J]. 装备环境工程, 2015, 12(2): 49-53.
XING S H, LI Y, MA L, et al.Research Progress in Cathodic Protection Technology for Marine Infrastructures in Deep Sea Environment[J]. Equipment Environmental Engineering, 2015, 12(2): 49-53.
[10] MA L, LI K, YAN Y, et al. Low Driving Voltage Aluminum Alloy Anode for Cathodic Protection of High Strength Steel[J]. Advanced Materials Research, 2009, 79/80/81/82: 1047-1050.
[11] 张国庆, 张伟, 钱思成, 等. 南海1200 m深海环境Al-Zn-In合金阳极电化学性能研究[J]. 表面技术, 2022, 51(5): 177-185.
ZHANG G Q, ZHANG W, QIAN S C, et al.Electrochemical Properties of Al-Zn-in Alloy Sacrificial Anode at 1 200 m Deepwater Environment in South China Sea[J]. Surface Technology, 2022, 51(5): 177-185.
[12] 高心心, 郭建章, 张海兵. 1000MPa级高强钢焊接件的氢脆敏感性研究[J]. 材料导报, 2017, 31(6): 93-97.
GAO X X, GUO J Z, ZHANG H B.Hydrogen Embrittlement Susceptibility of 1000MPa Grade High Strength Steel Weldment[J]. Materials Review, 2017, 31(6): 93-97.
[13] 高海平, 张慧霞, 郭为民, 等. 阴极极化对高强钢焊接件应力腐蚀敏感性的影响[J]. 装备环境工程, 2014, 11(1): 7-12.
GAO H P, ZHANG H X, GUO W M, et al.Effect of Cathodic Polarization on Stress Corrosion Cracking Susceptibility of Weld High Strength Low Alloy Steel in Seawater[J]. Equipment Environmental Engineering, 2014, 11(1): 7-12.
[14] LIU Q, ATRENS A D, SHI Z, et al.Determination of the Hydrogen Fugacity during Electrolytic Charging of Steel[J]. Corrosion Science, 2014, 87(5): 239-258.
[15] FERNANDEZ J.Retraction Statement: Stress Corrosion Cracking of High Strength Stainless Steels for Use as Strand in Prestressed Marine Environment Concrete Construction[J]. Materials and Corrosion, 2016, 67(8): 888.
[16] 张体明, 赵卫民, 郭望, 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
ZHANG T M, ZHAO W M, GUO W, et al.Susceptibility to Hydrogen Embrittlement of X65 Steel under Cathodic Protection in Artificial Sea Water[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 315-320.
[17] 刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
LIU Y, LI Y, LI Q.Effect of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel in Simulated Deep Sea Environment[J]. Acta Metallurgica Sinica, 2013, 49(9): 1089-1097.
[18] ARAFIN M A, SZPUNAR J A.Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking[J]. Materials Science and Engineering: A, 2011, 528(15): 4927-4940.
[19] BEAL C, KLEBER X, FABRÈGUE D, et al. Embrittlement of a High Manganese TWIP Steel in the Presence of Liquid Zinc[J]. Materials Science Forum, 2012, 706/707/708/709: 2041-2046.
[20] 潘大伟, 高心心, 马力, 等. 模拟深海环境中高强钢的阴极保护准则[J]. 腐蚀与防护, 2016, 37(3): 225-229.
PAN D W, GAO X X, MA L, et al.Cathodic Protection Criteria of High Strength Steel in Simulated Deep-Sea Environment[J]. Corrosion & Protection, 2016, 37(3): 225-229.
[21] 袁玮, 黄峰, 张恒康, 等. 模拟深海无氧环境下阴极保护电位对X80钢应力腐蚀行为的影响[J]. 材料保护, 2020, 53(11): 8.
YUAN W, HUANG F, ZHANG H K, et al.Effect of Cathodic Protection Potential on Stress Corrosion Cracking of X80 Steel in Simulated Deep-sea Oxygen-free Environment[J]. Material Protection, 2020, 53(11): 8.
[22] KOYAMA M, AKIYAMA E, TSUZAKI K.Effect of Hydrogen Content on the Embrittlement in a Fe-Mn-C Twinning-Induced Plasticity Steel[J]. Corrosion Science, 2012, 59: 277-281.
[23] 马力, 曲本文, 闫永贵, 等. 低驱动电位铝合金牺牲阳极的研制[J]. 材料开发与应用, 2014, 29(3): 61-65.
MA L, QU B W, YAN Y G, et al.Development of Low Driving Voltage Sacrificial Anode[J]. Development and Application of Materials, 2014, 29(3): 61-65.
[24] 张一晗, 杨美桐, 张海兵, 等. Al-Zn-Sn-Ce牺牲阳极干湿交替环境电化学性能研究[J]. 装备环境工程, 2023, 20(6): 75-82.
ZHANG Y H, YANG M T, ZHANG H B, et al.Electrochemical Performance of Al-Zn-Sn-Ce Sacrificial Anode in Alternating Dry and Wet Environment[J]. Equipment Environmental Engineering, 2023, 20(6): 75-82.
[25] 许佳宁. 船舶与海洋工程用牺牲阳极检验标准分析[J]. 材料保护, 2023, 56(11): 167-174.
XU J N.Analysis of Sacrificial Anode Inspection Standards in Ships and Marine Engineering[J]. Materials Protection, 2023, 56(11): 167-174.
[26] 万冰华, 费敬银, 王少鹏, 等. 牺牲阳极材料的研究、应用及展望[J]. 材料导报, 2010, 24(19): 87-93.
WAN B H, FEI J Y, WANG S P, et al.Research, Application and Prospect of Sacrificial Anode Materials[J]. Materials Review, 2010, 24(19): 87-93.
[27] 马燕燕, 许立坤, 王洪仁, 等. 锌合金牺牲阳极海水干湿交替条件下的电化学性能研究[J]. 腐蚀与防护, 2007(1): 9-12.
MA Y Y, XU L K, WANG H R, et al.Research on Electrochemical Properties under the Conditions of Zinc Alloy Sacrificing Anode Seawater[J]. Corrosion and Protection, 2007(1): 9-12.
基金
国家重点研发计划(2022YFB3808800)